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Speculations abound that several facets of fully developed turbulent flows are 
fractals. Although the earlier leading work of Mandelbrot (1974, 1975) suggests that  
these speculations, initiated largely by himself, are plausible, no effort has yet been 
made to put them on firmer ground by resorting to  actual measurements in turbulent 
shear flows. This work is an attempt at filling this gap. In  particular, we examine 
the following questions : (a )  Is the turbulent/non-turbulent interface a self-similar 
fractal, and (if so) what is its fractal dimension ? Does this quantity differ from one 
class of flows to another? ( b )  Are constant-property surfaces (such as the iso-velocity 
and iso-concentration surfaces) in fully developed flows fractals 1 What are their 
fractal dimensions ? (c) Do dissipative structures in fully developed turbulence form 
a fractal set ? What is the fractal dimension of this set 2 Answers to these questions 
(and others to be less fully discussed here) are interesting because they bring the 
theory of fractals closer to application to turbulence and shed new light on some 
classical problems in turbulence-for example, the growth of material lines in a 
turbulent environment. The other feature of this work is that  i t  tries to quantify the 
seemingly complicated geometric aspects of turbulent flows, a feature that has not 
received its proper share of attention. The overwhelming conclusion of this work is 
that several aspects of turbulence can be described roughly by fractals, and that their 
fractal dimensions can be measured. However, i t  is not clear how (or whether), given 
the dimensions for several of its facets, one can solve (up to  a useful accuracy) the 
inverse problem of reconstructing the original set (that is, the turbulent flow itself). 

1. Introduction 
Starting with Richardson (1922), i t  has been thought that fully developed 

turbulence consists of a hierarchy of eddies, or scales of various orders. The 
mechanism responsible for this situation is assumed to be that eddies of a given order 
(or size) arise as a result of the loss of stability of larger eddies of the preceding order; 
these in turn are assumed to lose their stability and generate eddies of a smaller order 
to which they transmit their energy. This recurring scheme is expected to terminate 
a t  scales small enough to be stable - that  is, scales whose characteristic Reynolds 
number is unity. It is well known that this lower bound on the scale size is of the 
order of the Kolmogorov scale. This theory of cascade, verbalized in a memorable 
rhyme by Richardson (1922), and cultivated by Kolmogorov (1941, 1962), Obukhov 
(1941, 1962), Onsager (1945) and Weizsacker (1948), has made remarkable strides in 
advancing our understanding of turbulent flows. 

It is this description of turbulent flows - namely that they are ‘objects’ consisting 
of a hierarchy of scales - that  leads to the expectation that the theory of fractals 
(Mandelbrot 1982, to which reference must be made for an enjoyable and original 
account of fractals) must be applicable to turbulence. I n  the most basic sense, fractals 
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are objects that  display self-similarity over a wide range of scales. (We shall return 
in $5 to the fact that  fractals are now used to describe more general class of objects 
than those displaying strict self-similarity.) Mandelbrot (1982), for example, has 
remarked that ‘turbulence involves many fractal facets’ and claimed that a proper 
investigation of the geometric aspects of turbulence - which has been ignored all 
along in the vast literature on turbulence - must necessarily involve fractals; 
concepts from Euclidean geometry are totally inadequate. He has also led the way 
by his own investigations (Mandelbrot 1974,1975) but, in his own words (Mandelbrot 
1982), ‘they involve suggestions with few hard results as yet.’ The intention of this 
paper is to remedy this situation by resorting to  actual measurements in turbulent 
flows. 

Analogous to the Euclidean dimension of classical (or ordinary) objects, each 
fractal object is associated with a characteristic dimension called the fractal 
dimension which forms a basic measure of i t  fragmentation or roughness; i t  has the 
property that it is strictly greater than the object’s topological dimension. It appears 
as a certain exponent D = log N/log ( l /e) ,  characteristic of a self-similar object which 
is made of N parts, each of which is obtained from the whole by a reduction of ratio 
e .  (We hope that this inadequate explanation here, to be amplified in later sections, 
will not hinder the readability of this paper.) Of course, a complete description of 
fractal sets demands a specification of other quantities such as lacunarity (Mandelbrot 
1982) - which, loosely speaking, is a measure of how far the fractal object is from 
being dust-like - or the entire spectrum of scaling functions (Halsey et al. 1986) only 
one of which is the fractal dimension. (Even more appropriately, one may use scaling 
functions of the type introduced by Feigenbaum 1983 ; these scaling functions 
contain all the geometric information about the object in question, but they are 
nowhere differentiable and are awkward to handle - even assuming that they can be 
constructed somehow.) Our primary effort in this paper will be confined to  the 
determination of the fractal dimensions (if they exist) of the turbulent/non-turbulent 
interface ($2), iso-velocity surfaces (§3), and regions of active dissipation ($4); in $5, 
we briefly discuss several other avenues, studied to  date in less detail than the issues 
of the preceeding three sections. In  each section, we lay sufficient foundation for the 
specific issues to be discussed there. Section 6 will put these various measurements 
in the overall context of what additional insight one may acquire about turbulent 
flows. 

2. Fractal dimension of the turbulent non-turbulent interface 
2.1. Background 

Observations (Corrsin & Kistler 1954) suggest that  in high-Reynolds-number un- 
bounded turbulent shear flows a sharp front or interface demarcates the turbulent and 
non-turbulent regions (see figure 1 ) .  The free edge of a boundary layer shows much 
the same behaviour. Townsend (1956) suggested that large eddies of turbulence 
contort the interface, but a visual or spectral study of the interface suggests that 
contortions over a range of scales occur. In  the framework of scale similarity alluded 
to above, this leads to the natural expectation that the interface is a fractal surface. 
The aim in this section is to determine the fractal dimension (if one exists) of the 
turbulent/non-turbulent interface in several classical shear flows. 

It is generally understood that turbulent/non-turbulent interface means the 
surface separating the vortical and non-vortical regions of the flow ; the vortex- 
stretching mechanism inherent in three-dimensional motion can be thought of as 
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FIGURE 1. A short duration shadowgraph of the wake of a projectile shot through the atmosphere 
at supersonic speed. This classic photograph made at  the Ballistic Research Laboratories, Aberdeen 
Proving Ground, first appeared in Corrsin & Kistler (1954), and has since been reproduced many 
times. The remarkably sharp boundary between the turbulent region in the wake and the outside 
air has led to the notion of a contiguous interface whose properties were explored by Corrsin & 
Kistler. and several others later. 

being responsible for maintaining a sharp separation between the two regions. That 
such a surface can be defined was demonstrated by Corrsin & Kistler (1954), who also 
studied its properties in some detail. It is by no means obvious that the interface 
observed in flow-visualization pictures such as figure 1 and the vortical/non-vortical 
interface are the same. We shall return to  this point later but, until required, we shall 
not be specific about which interface we are discussing. 

The prescription for determining the fractal dimension of the interface (surface) 
is to cover it with area elements of decreasing size, and note how the area changes 
with the resolution 6 of these square elements. For a surface that is highly contorted 
with squiggles of ever-increasing fineness, the measured area estimates will increase 
indefinitely with increasing resolution. If the surface has no regularity associated with 
it, one cannot in general specify the manner in which the area will increase with 
increased resolution. However, if some order prevails in the sense that the surface 
observes scale similarity - that  is, the surface looks the same (at least statistically) 
at  all levels of resolution, or, equivalently, i t  is a self-similar fractal - the area increase 
will follow a power law; in general, power laws are symptomatic of self-similar or 
fractal behaviour. For a true fractal surface of dimension D, (the suffix 3 indicating 
that the interface is embedded in a three-dimensional physical space) the area will 
indefinitely increase according to the relation 

One can rewrite (2.1) as 
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FIGURE 2 .  A schematic of an object F with a fractal interface, and its intersections with a plane 
and a line. The intersection with the plane leads to an object whose border has a dimension D,, 
one less than D,, the dimension of F embedded in the three-dimensional space. The dimension of 
the line intersection leads to a Cantor set whose fractal dimension D,  is 2 less than D,. 

This is the standard relation used in fractal-dimension calculations. The meaning of 
the dimension becomes clearer if we apply this above procedure to classical surfaces, 
say a square of unit area. Let us cover the square with 16 area elements each of which 
is of length a. Then D, will be log 16/log $ = 2, which is the dimension of the area 
of surface in Euclidian geometry. It is trivial to convince oneself that  covering the 
square with increasingly finer area elements will always give D, = 2 for the square. 
From this simple example and other similar ones, one concludes that for classical 
surfaces the dimension calculated from ( 2 . 2 )  has the usual meaning associated with 
the dimension. For fractals, the dimension as calculated from (2.2) will in general 
not be an integer - and hence the name fractal - but i t  retains the meaning as the 
exponent specifying the rate a t  which the number N of area elements increases with 
.c. As already noted, a characteristic of a fractal surface is that  its fractal dimension 
will be larger than its Euclidian dimension of 2. What this implies is that  a fractal 
surface covers something between an area and a volume, a fact for which the large 
degree of convolutedness of the surf'ace is responsible. 

What use is the fractal dimension of a fractal surface since its surface area is 
undefined? From (2.1) i t  is seen that, given the accuracy (or the resolution) to which 
the arra needs to be specified, the dimension D, will provide the number of the area 
elements of prescribed resolution required to cover the fractal surface. This goes some 
way in describing the fractal surface. A complete specification of the fractal surface 
no doubt requires additional information, such as the location and the orientation 
of these little area elements, but the dimension is the basic quantity related to the 
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convolutedness of the surface. A measure of the convolutedness of a surface is of 
importance, for example, in the contexts of combustion. 

2.2. Dimension from sections with lower-dimensional subspaces 

To measure the fractal dimension of a surface by the direct procedure described above 
is difficult, and so we adopt alternative procedures based on sections with lower- 
dimensional subspaces (Mandelbrot 1982). To explain this, i t  is convenient to refer 
to figure 2 .  Let F be an object (e.g. a turbulent jet) in three-dimensional space with 
a fractal interface of dimension D,. Let P be a plane intersecting the object. In 
analogy with our experience in Euclidean geometry, we may expect that  the fractal 
dimension D, of the boundary of the resulting object P n  F and the dimension D, 
are related by 

Similarly, an intersection of the object F with a line element gives a set of isolated 
points - akin to  the Cantor discontinuum - whose dimension D ,  can be measured. 
Again, in analogy with classical objects, we expect that  

D, = D,+1. (2.3) 

D, = D,+2. (2.4) 

Although there are exceptions to this rule (Mandelbrot 1982, p. 135), i t  is known to 
hold if the sections taken are independent of the fractal itself. Equivalently, the 
orientation of the intersecting plane or line will be irrelevant if the fractal is isotropic. 
More discussion and a brief circumstantial justification of this point will appear in 
$52.3 and 2.4. 

It is appropriate to mention here that the interface cannot be a true fractal because 
the scale similarity a t  all scales, leading to one fixed value of D,, does not strictly 
obtain. Clearly, i t  will be truncated on the low end by the Kolmogorov scale; that  
is, if one measures the area of the interface with resolutions better than the 
Kolmogorov scale, i t  behaves like a classical surface of finite area (because surface 
convolutions on even finer scales do not exist). On the upper end, i t  can be expected 
to be bounded by scales comparable with or smaller than the large scale of the flow. 
Thus, the interface can be expected to be fractal-like only in an intermediate range 
of scalest. This is not a highly restrictive situation because, in all practical 
circumstances, there are inevitable scale cutoffs, and any meaningful application of 
the fractal concept to  real circumstances will have to  live with this fact. At large flow 
Reynolds numbers, the range of scales over which similarity can be expected to hold 
is large; and, naturally, i t  is easier to  identify the fractal-like behaviour. As will be 
described more fully at appropriate places, instrumentation constraints restricted our 
experiments to moderate Reynolds numbers (the integral to Kolmogorov scale ratio 
no more than a few hundreds). Even so, the results are sufficiently convincing to 
justify their publication : besides making the important connection between fractals 
and fluid flows, they shed new light on some classical problems of turbulence. 

2.3. Dimension by intersection with a plane 
The practical way of obtaining two-dimensional sections or slices would be to seed 
the flow with some passive markers (e.g. smoke), illuminate a section of the flow by 
a thin sheet of light, and photograph the section for later analysis, namely measuring 

t It is worth pointing out that ,  while the large scale is set by the flow boundary conditions and 
the small scale by the viscosity of the fluid, the equations of motion themselves do not set any n w  
scales, which is what renders the scaling expectations plausible. 
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FIGURE 3. A smoke photograph of a turbulent boundary layer developing on a flat plate. The 
momentum thickness Reynolds number is around 2000. The thickness of the intersecting light sheet 
is of the order of the Kolmogorov thickness. 

the dimension of the ‘border’ between the turbulent and non-turbulent regions. 
Although the intersecting plane must in principle be mathematically thin, it may in 
practice be of finite thickness without violating this principle, provided the thickness 
is smaller than or comparable with the Kolmogorov lengthscale 7. The rationale for 
this assertion is that  the ‘fuming’ due to the finite thickness of the plane is negligible 
because the Kolmogorov thickness represents the smallest scale of motion relevant 
to turbulence dynamics. 

We have already alluded to the fact that  smoke pictures (or pictures obtained by 
any other means of flow visualization) do not mark vorticity regions (which they 
should, to be truthful to the interface) for the following two reasons, both related 
to the diffusivity of the passive marker. If we remember that smoke is composed of 
aerosols (=  oil fog) whose diffusivity is small compared with the molecular viscosity, 
the relatively large value of the effective Schmidt number will create a disparity 
between the smallest dynamical scale (i.e. 7)  and the smallest scale visible in the flow. 
This is not too worrisome as long as the latter is smaller than the former. The second, 
and more important, point is that  to mark the interface satisfactorily, one has to put 
smoke exactly where vorticity is being generated, which is strictly impossible. 
Obviously, if one puts smoke very far upstream of the observation point, the pattern 
one sees is in general a remnant of the integrated memory that a given streakline 
experiences, and not necessarily a reflection of the local dynamics and geometry. 
Because turbulence diffuses smoke rather rapidly, there is some hope, however, that 
i t  will roughly mark the interface if carefully injected in the fully turbulent region 
reasonably close to the region of visualization, but not so close that i t  does not have 
time to diffuse. 

Even if one grants the plausibility of this last statement, even roughly marking the 
interface by smoke is admittedly a trial-and-error procedure in practice. The issue 
is worth exploring in detail-which we have not done- but there are reasons of 
precedence which are somewhat reassuring. For example, the statistics of the 
interface obtained by marking i t  with hydrogen bubbles (Kim, Kline & Reynolds 
1971) and by heat (Sunyach & Mathieu 1969) agree favourably with those obtained 
by momentum and other means; we ourselves have recorded elsewhere (Sreenivasan, 
Antonia & Britz 1979) some simultaneously obtained traces of two components of 
fluctuating velocity, Reynolds shear stress and the temperature fluctuation in a 
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FIGURE 4. A section of an axisymmetric jet made visible by laser-induced fluorescence, from 
Dimotakis et al. (1981). Scales down to the Kolmogorov limit have been resolved in this picture. 

slightly heated jet, which confirm that passive scalars are useful for marking the 
interface. The final point must no doubt be that, although our procedure is believed 
to mark the interface roughly, i t  is the smoke/no-smoke interface that we are strictly 
studying. 

Another concern is that a streamwise section is somehow preferential, thus biasing 
the results. To test this, one ought to  take plane sections of the interface at several 
orientations and demonstrate the invariance of the results. For the anisotropic flows 
of the sort studied here, i t  is possible that the scale-invariance concept must be 
thought through more thoroughly, and that one may come up with more than one 
fractal dimension depending on which planar section one is measuring. Our work in 
this direction is continuing, but our argument is that  the present results are 
representative. 

Figure 3 shows a section of a boundary layer made visible by injecting smoke. This 
figure appears to  suggest that  there is no contiguous interface, and that there are 
islands of non-turbulent regions surrounded by turbulent ones, just as there are 
isolated pockets of turbulence sticking out. The reason that photographs like figure 1 
do not show this feature is that  they have been obtained by optical means which 
integrate along the path of light. Obviously, this will smooth out the interior ‘holes ’, 
and what one sees as a contiguous interface is the horizon of a large number of images 
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FIQURE 5. A schematic of a part of a digitized image. The dark dots represent the points with 
intensity above threshold (turbulent regions, by definition here), the light ones representing 
non-turbulent regions. We want to measure the fractal dimension of the border between the two 
regions. The little circles of radius E drawn around a dark and a light dot in the upper right corner 
are two examples of boundary points within the distance E.  

superposed on each other. Dimotakis, Lye & Papantoniou (1981) pointed out this fact 
first, and produced several fascinating pictures of a turbulent jet, one of which is 
reproduced here as figure 4. (No analysis was attempted by us on the pictures 
obtained by these authors.) Plane sections by themselves cannot deny the existence 
of out-of-plane connections of what appear as islands or holes, and we should 
emphasize that to prove the non-contiguity of the interface one has to produce at 
the very least simultaneous pairs of pictures in perpendicular planes. In the absence 
of such work, the point is made here for the sole purpose of indicating that, if the 
interface is indeed non-contiguous, the fractal dimension one obtains will not lose 
its meaning but will have to be interpreted as a measure of both its ‘roughness’ and 
‘fragmentation’, and not merely of the former, as would be the case for a contiguous 
interface. 

We may now discuss several ways in which the fractal dimension D,  of the border 
can be measured. The length of the border, in analogy with the coastline of an island 
cluster, increases with increasing resolution according to the relation 

L = Ksl-Dz, (2.5) 

where e is the lengthscale relating to the fineness of resolution, and K is a constant 
related to the lacunarity of the fractal set. This direct method has so far eluded us 
chiefly because of the algorithmic complexity in faithfully following the highly 
contorted, multivalued and disconnected interface (see figures 3 and 4), and alter- 
natives seem called for. We have adopted a simple alternative spelt out in Mandelbrot 
(1982) and Grebogi et aE. (1985), but summarized here with the anticipation that they 
may be unfamiliar to a number of the Journal’s readers. 

Considering both regions (turbulent and non-turbulent) that are within a distance 
s from the border, one can form a strip of width 2s about the border, which will have 
an area of 2sL, where L is the length of the border. This area clearly goes like e2-02, 

from (2.5). One measures this area for varying E, and obtains D, from the slope of 
a log-log plot. The implementation of this idea involves the following procedure. One 
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FIQURE 6. The logarithm (to base 10) of the number of boundary points N ,  (see figure 5) as a function 
of the distance E from the boundary. The flow is a heavily tripped boundary layer, thickness about 
10 cm, U ,  = 2.5 m s-l. The Kolmogorov and the integral scales are shown for reference. The inset 
showing the slope gives D, = 2-mean slope = 1.37; D, is thus expected to be 2.37. 

digitizes the image of the flow obtained as described previously, and obtains an 
assignment of light intensity at each of the digitized points. One then sets a judicious 
threshold for the light intensity which demarcates the turbulent (above-threshold) 
from the non-turbulent (below-threshold) regions. (Naturally, one has to ascertain 
that the precise value of the threshold is not important for the results to follow, and 
evidence to this end will be presented a t  the appropriate place.) One then obtains 
a digitized image, schematically shown in figure 5, where each dark dot is a digitized 
image point in the turbulent region and each light dot in the non-turbulent. It is the 
dimension of the border between the two regions that we want to measure. The 
conceptual equivalent of the data processing on the computer is the following. Draw 
around each of these digitized points (dark as well as light) circles of radius e. 
Whenever a circle drawn around a point crosses the border, obtained by interpolation 
between the neighbouring light and dark dots, the point is counted as a border point 
within a distance e from the border. Count the number of all border points Nb(E) within 
the distance e from the border. Repeat the process for varying E, and determine the 
variation of Nb(e) with respect to e. From the earlier discussion in the paragraph, 

For future reference, we may note that the quantity 2 - D, (or in general d - D,, 
where D, is the fractal dimension of the object’s interface in the embedding space 
of dimension d )  is called the codimension. In most well-behaved (i.e. integrable or 
non-chaotic) systems, a small amount of uncertainty e in the initial state will translate 
to a comparable final-state uncertainty. For fractal objects, the final-state 
uncertainty is large and proportional to e D c ,  where D, is the codimension (Grebogi 
et al. 1985). The codimension appears again in $4. 

Figure 6 shows a plot of log Nb(e) us. log E obtained from the digitized image of the 
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FIGURE 7. The effect of threshold setting on the codimension. The threshold (in the notation of 
the text) varies by a factor of 1.5 with no perceptible change in the slope. In the units described 
in the text, the thresholds are (from top to bottom) 3000, 3500 and 4000. 

type shown in figure 3 ; the inset shows the slope of the curve. Clearly, there is a region 
of constant slope as expected for a fractal interface. Several comments must be made 
before interpreting the result. First, the low end of the constant-slope region is 
comparable with the Kolmogorov scalet. The high cutoff seems to occur around it, 
where L' is the transverse integral scale of turbulence in the boundary layer. (This 
integral scale was obtained from two-point correlation measurements with the fixed 
probe at y/6 = 0.4 and the other probe moving outwards.) The obvious conclusion 
that the scale similarity extends only up to iL' on the high end is not correct because, 
as we shall soon show, the high cutoff occurs prematurely because of the limitations 
of the image processing procedure. To obtain reliable statistics on the high end, one 
has to include many large scales in the digitized image, which is usually hard 
(especially if the fine resolution requirements are to be satisfied also) because of the 
finite capacity of the image digitizer. We have not been able to  do that,  which means 
t,hat, t,he apparent termination of scale similarity at M is artificial. This shortcoming 
is overcome in the line-intersection method of $2.4. 

The second comment relates to the effect of the threshold setting on the slope in 
figure 6. At least within the threshold range of 3000-4000 for the light intensity (the 
units being such that 12000 indicates the brightest spot in the picture and 0 the 
darkest), the power of e in (2.7) is essentially constant (figure 7 ) ;  the threshold of 
figure 7 is about & 15 yo of that used in the boundary-layer work. The third relevant 

t There is some concern that to detect similarity on scales of the order of 7, the resolution of 
the digitized image must be substantially smaller (at least by a factor 2 ) .  Figure 6 shows that this 
factor is about 1.5 for present measurements. We may remark that estimating 7 to an accuracy 
better than a factor 2 is beset with many uncertainties; among other things, it  depends on the precise 
location in the flow, the assumptions made in obtaining the energy dissipation, the probe size, etc. 
The number quoted in figure 6 is thus a representative value. 
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FIGURE 8. Calibration experiments for the imaging method. The continuous line (mean slope = 
codimension = 0.5) is for a quadric Koch island, and the dashed line (codimension = 1) is for a 
square. Their respective dimensions are in good agreement with the theory. 
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FIGURE 9. The logarithm (to base 10) of the number of boundary points Nb (see figure 5 )  as a function 
of the distance e from the boundary. The flow is a round water jet seeded with polystyrene spheres. 
Jet exit Reynolds number is about 2500, diameter D = 5 mm ; x / D  = 30. The inset shows that the 
slope of the line is 0.67+ 15%. 
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comment concerns the ‘ calibration ’ experiments on some well-known fractals (e.g. 
a quadric Koch island, Mandelbrot 1982, p. 50) and regular objects (such as a black 
square). As shown in figure 8, it is clear that the codimension (mean slope of the 
curves) is 0.5 for the Koch island (i.e. D, = 1.5, the theoretical value), and 1 for the 
square (D, = 1 ) .  

Putting all this together, we conclude from figure 6 that scale similarity extends 
from q up to a fraction o f t  (the precise value to  be determined shortly), and that 
we have D, = 2-slope = 1.38 (for the border), leading to the conclusion that 
D, = 2.38 (for the interface surface). 

Figure 9 shows similar data for an axisymmetric jet of water flowing vertically 
down into a large tank of still water. The jet was seeded with polystyrene micro- 
spheres; both seeding and gravity effects were considered negligible. A part of the jet 
in the developed region (in the vicinity of x / D  = 30) was intersected by a thin sheet 
of light, photographed and digitized as before. Again, scale similarity extends all the 
way from to a fraction o f t ;  for reasons already mentioned, we think little of the 
fact that the high cutoff occurs a t  it (instead of in the boundary layer) or that 
the slope is slightly different from the boundary-layer case. This latter is well within 
the scatter of the data (about which more will be said in $2.4). 

In determining the dimension, we have chosen to digitize certain regions of the 
cross-section that are neither too close to wall (or jet axis) nor too far away from it. 
Both for the jet and the boundary layer, the digitized image spans (approximately) 
0.6 < y < 0.1, where y is the intermittency factor representing the fraction of time 
the flow is turbulent a t  a given point in the flow. We empirically found the region 
just mentioned to be optimum given the image-processor constraints. 

2.4. Dimension by  line intersection 
As discussed earlier, the dimension of the set resulting from line intersection of the 
interface (yielding simply a ‘truncated’ Cantor set of dimension less than 1) is 
expected to be two less than that of the interface, D,. In  practice, we have interpreted 
that this statement holds true for the one-dimensional cut obtained by intersecting 
a moving interface with a small (i.e. 7 or smaller) stationary hot-wire probe. This 
assumes the validity of Taylor’s frozen-flow hypothesis, which we know is not strictly 
true, but much can be learnt in spite of this shortcoming. 

As is standard in the turbulence literature, we formed the intermittency function 
from the measured velocity signal by setting a convenient threshold and a hold time. 
The reasonableness of the threshold as well as the hold time was ascertained by a 
comparison of the resulting intermittency function with the original signal. The set 
of intersection points between a horizontal line and the intermittency function results 
in a ‘truncated’ Cantor set whose dimension D, we want to measure. To obtain D,, 
the so-called box-counting algorithm, which is merely the application of (2.2) for line 
elements, has been employed. It makes direct use of the definition of fractal dimension 
by counting the number N,  of the line segments of length E required to cover the set 
for several values of e .  

Figure 10 shows a typical set of data for N ,  vs. E for the boundary-layer flow. It 
is seen that there is a sizeable region of constant slope, giving in this instance 
D, = 0.4; we infer that D, = 1.4 and D, = 2.4. It should be noted that D, inferred 
from one-dimensional cuts is approximately one less than D,  inferred from inter- 
sections with planes, thus providing some circumstantial justification for the method 
of sections with lower-dimensional subspaces discussed in $2.2. Note also that the 
region of self-similarity does not extend all the way down to 7 as in the two- 
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FIGURE 10. The logarithm (to base 10) of the number of segments N ,  of length E needed to cover 
the Cantor discontinuum formed by the intersection between a horizontal line and the intermittency 
function (turbulent boundary layer, y/6 = 0.91, U ,  = 12 m s-l). The inset shows the dimension 
D, as a function of the position of the line intersection, or probe height from the wall in the boundary 
layer, obtained for several chunks of data. Corresponding intermittency factors, from the highest 
to the lowest, are: 0.41, 0.24, 0.19, 0.13, 0.10, 0.08. 

dimensional slice method of 32.1, and even scales up to  307 do not fall on the straight 
part. Part  of the reason is clearly the problem related to Taylor's hypothesis and the 
size of the hot-wire, which is several 7 long (approximately 107 in this case) both of 
which will bias the results a t  small scales. A more basic problem is related to the 
inappropriateness of using the streamwise velocity for constructing the intermittency 
function. One should ideally use a vorticity probe (which gives a much clearer on-off 
signal), or a passive scalar that  is uninfluenced by the long-range effects of the 
turbulent pressure field. However, the outer cutoff does not occur until e or beyond. 
Combining this result with the inner cut-off of the previous subsection, we might 
conclude that scale similarity extends between 7 and 36. (The outer cutoff is thus 
approximately the streamwise integral scale, which is of the order of the boundary- 
layer thickness . ) 

It is now helpful to examine the sensitivity of the dimension results with respect 
to position in the intermittent region where the one-dimensional slice was obtained. 
The inset in figure 10 shows the data as a function of the probe height in the 
intermittent region of the boundary layer. Because the interface is rarely found deep 
in the flow, not surprisingly, we cannot compute the dimensions for y ~ 0 . 5 6  
(corresponding to a y of almost unity). In  fact, calculations become uncertain for 
y < 0.7 S (or, roughly, y > 0.6), say, and hence we have not presented any results 
there. The variability of D,  is about 10 yo in the region 0.75 < y/S < 1 .O where the 
measurements are trustworthy; further, it  is approximately in this region that the 
two-dimensional slices were taken. Clearly, then, this latter method may be expected 
to represent an average of values obtained from one-dimensional slicing; it is 
somewhat reassuring that this is indeed the case. We conclude that one-dimensional 
cuts offer a reasonably valuable tool. The main contribution of this method has been 
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Fractal dimension of interface (surface) by 

two-dimensional one-dimensional 
Flow slicing slicing 

Boundary layer 2.38 2.40t 
Axisymmetric jet 2.33 2.32t 

Mixing layer - 2.403 
Plane wake - 2.373 

t Typical average over a range of the outer flow. 
3 Single value at some typical location in the outer region. 

TABLE 1. Summary of the fractal dimensions of the turbulent/non-turbulent interface in 
several classical turbulent flows 

to show that scale similarity extends all the way up to about the integral scales of 
motion. Recalling that the larger eddies, which are highly dependent on the boundary 
conditions for the flow, are a few integral scales long, we infer that the scale similarity 
does not include the biggest scales in the flow. Our conclusions about the interface 
are summarized in table 1. 

From here, the interface dimension of about 2.3-2.4 is seen to be essentially 
independent of the type of flow. What this means is that one cannot conveniently 
assign a distinct fractal dimension to each of the different classes of flows. We reiterate 
that this is not surprising because scale similarity does not encompass the largest 
scales, which are the ones that depend strongly on the geometric aspects of the flow. 

To the extent that in both methods we have examined the interface approximately 
in the region 0.6 < y < 0.1, we are not completely justified in talking about the 
dimension of the interface as a whole, although we expect that what is true of the 
part is true of the whole. We have already commented on the constraints in the plane- 
intersection method. One runs into two problems in the line-intersection method. 
Outside the region we have covered, the infrequent appearance of the interface there 
would demand the inclusion of data for long intervals of time in order to obtain 
reliable statistics, and this violates Taylor’s frozen-flow hypothesis. This is relatively 
easy to overcome, a t  least in principle, by resorting (for example) to intersection by 
a suitable laser beam of a fluorescing flow. Although this should be attempted soon, 
we have not done it immediately because waiting for enormously long times results 
in a randomization of results that  will obscure the fractal nature; this point is best 
deferred to $3 where it is more fully discussed. 

Finally, it  may be worth remarking that Maxworthy (1986) finds D, = 1.37 for the 
interface of the flattened bubbles of air injected into a viscous fluid contained in a 
Hele-Shaw experiment. 

2.5. Fractal dimension of clouds: a brief comparative study 
Lovejoy (1982) obtained the fractal dimension of clouds using the so-called area- 
perimeter rule (Mandelbrot 1982, p. 112). For classical objects, the perimeter P and 
the area A are related through Pcc A?. For an object with a fractal boundary of 
dimension D2p,  the relation is modified to P cc A(:)Dw. Thus, if one has different sizes 
of statistically similar fractal objects, this area-perimeter rule (both P and A 
evaluated to the same resolution) can be used to  determine D,?. Lovejoy used 
digitized images of satellite and rain-pattern pictures of clouds with sizes varying 
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between 1 km and 1000 km, and obtained the fractal dimension of about 1.34. It is 
the coincidence of this number with that obtained by us for D, in laboratory turbulent 
flows that calls for specific comment. Recall that we took a slice of the flow to obtain 
D,, whereas Lovejoy was looking a t  the boundary of the projection of a cloud onto 
a horizontal plane. The key question then is the difference between the two 
techniques. We know of no rigorous analysis of this point. However, a projection can 
be thought of as superposition of a large number of sections, each section being 
separated from the other by distances of the order 7.  

Going back to figures 3 and 4, we may qualitatively perceive the effect of 
superposition of several sections. One effect is obviously to reduce the interior 
fragmentation (leading to a reduced fractal dimension), but the other effect is to 
increase the boundary roughness (leading to an increase in fractal dimension). It is 
the net effect in which we are interested. If the fractal dimension is small (that is, 
neither the interior fragmentation nor the boundary convolutedness is very large), 
D, and D cannot be very different. While taking sections of clouds is not within 
our capability, superimposing sections of boundary-layer or jet flows can easily be 
done by increasing the thickness of the light sheet. This has been done, and the result 
is that increasing the relative size of the light-sheet thickness (from between 1 and 
27 to about 57) increases the dimension D,  (from 1.37 to 1.43), suggesting that 
D2p > D,. In  doing this experiment we could not unfortunately hold the Reynolds 
number constant, but if we believe that the primary effect of increasing the Reynolds 
number is to increase the range of scale similarity (but not alter the dimension), this 
increase in D, is conclusive enough. If this reasoning holds for clouds, we may 
conclude that D, c 1.34. It is interesting that Carter et al. (1986), using an entirely 
different procedure from Lovejoy’s, arrive at a number of 1.16 for D,. 

We have become aware from a preprint by Lovejoy & Schertzer (1986) that smaller 
dimensions than 1.34 have in fact been obtained for clouds by setting the threshold 
to higher values. The result that the more intense regions of a fractal are distributed 
on sets with lower fractal dimensions is described in $$ 3 and 4.3, and is apparently 
quite general (Halsey et al. 1986). 

2.p. 

3. Dimension of iso-velocity surfaces in boundary layers 
Here, we seek the fractal dimension of surfaces separating regions of velocity above 

and below a certain chosen level, say u1 in figure 11.  One can similarly (and more 
satisfactorily) address the issue of iso-concentration surfaces. We have used the 
line-intersection method described in $ 2.4. As before, we get Cantor discontinua 
whose dimension can be obtained by the box-counting method. The hope is that 
adding 2 to the numbers obtained will yield the fractal dimension of iso-velocity 
surfaces; again, one should keep in mind the various aspects discussed in $2. Figure 
12 shows results from a box-counting algorithm implemented on a signal obtained 
in a boundary layer at a height of 0.358. The different curves are for different segments 
of the same (long) signal. To within the variability of about 12%, the line drawn 
through these various curves represents a mean behaviour. Such results can be 
obtained for several velocity levels of the same signal (the uncertainty is largest for 
levels near the mean velocity) and for signals obtained at several heights in the 
boundary layer, all of which are consolidated in figure 13. The dimension is highest 
for the iso-surface for the local mean velocity, and drops off on both sides. Further, 
the peak value of the dimension goes up slowly towards 3 as the distance from the 
wall increases (see inset). 
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FIGURE 1 1 .  A turbulent velocity signal, ~ ( t ) ,  and the level u1 defining the iso-velocity surface. 
The units are arbitrary. 
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FIGURE 12. The logarithm (to base 10) of the number N ,  of the line segments of length c required to 
cover the Cantor discontinuum obtained by the intersection of the threshold level u, ( =  0.75 U,) 
with the velocity signal; y/6 = 0.35, U ,  = 20 m s-l, 6 = 4 cm. Each line in the figure corresponds 
to a different segment of the velocity signal, each of which is of the order of 100 transverse integral 
scales long (see text). The mean slope (Dl) is 0.50 with a variation of 12 yo, giving a D, = 2.50. 

A complete interpretation of these curves must take into account several factors. 
We expect the dimension to be largest for the most space-filling iso-velocity surface, 
or the velocity with the largest number of ‘level crossings’ (which roughly translates 
as the largest probability density - see, for example, Sreenivasan, Prabhu & Nara- 
simha 1983). In  the fully turbulent regions of the boundary layers, the peak of the 
probability density of the velocity signal occurs roughly a t  the mean velocity. Far 
into the boundary-layer free stream (i.e. y >> a), we should ideally expect nothing but 
the free-stream velocity to prevail everywhere ; thus the set u1 + U ,  is a null set and 
its complement, namely the set u1 = U,, is really a classical volume for which the 
dimension must equal 3. In  practice, the presence of some overriding noise on the 
free-stream velocity will reduce the peak dimension to something smaller than 3 and 
produce a spread onto the neighbouring velocity levels. In  the intermittent regions, 
where laminar chunks of signal are interspersed between the turbulent ones, the 
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FIGURE 13. The dependence of the dimension of iso-surfaces of streamwise velocity as a function 
of both its magnitude and the distance from the wall. The spread is smaller as one goes away from 
the wall, while the peak magnitude D* (shown in the inset) increases. The solid curve with no data 
is the mean velocity distribution in the boundary layer. The scales for the abscissae for each of 
the dimension plots is the same as that for the mean velocity. 
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FIGURE 14. The effect of increasing the data segment length used for computing the dimension. 
The data segment length is, from bottom to top: 508, 838, 1328, 2008 and 4308, where 8 is the 
transverse integral lengthscale. For small lengths, there is a distinct constant-slope region over the 
scales of interest; this becomes less conspicuous as the signal length increases. For large data 
segments, one can find a constant-slope region in the scale region far larger than the integral scale; 
the dimension D ,  is very nearly 1, however. 
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FIGURE 15. The box-counting algorithm applied to a typical iso-velocity intersection, curve (l),  
and to the same amount of points randomly distributed on a line, curve (2). For curve 2 there is 
no self-similarity range; only a t  large scales, for which the set looks like a solid line, do we get 
D, = 1. 

dimension of an iso-velocity surface must be a weighted average between those of 
the same iso-surface in the turbulent and non-turbulent regions ; the dimension will 
now peak a t  around the mean velocity in the non-turbulent region because the 
distribution of the Cantor-set elements is much denser there than anywhere else 
(with or without noise); according to the measurements of Kovasznay, Kibens & 
Blackwelder (1970), the mean velocity in the non-turbulent region is approximately 
the same as the overall mean velocity (at  least to the accuracy appropriate in this 
context). It is also logical that the dimension must get smallest near the wall because 
the strong viscous effects will inhibit excessive contortions of an iso-velocity surface. 
While all these interpretations are consistent with the data of figure 13, note that the 
data of figure 13 do not apply to  iso-surfaces in the non-turbulent regions only, and 
hence cannot answer questions related, for example, to the dimension of an 
iso-velocity surface with u1 = 0.9U, residing entirely in the non-turbulent region. 

I n  figures 12 and 13, we have used many segments of signal that  are of the order 
of 50 transverse integral timescales long, and ensemble averaged over them. This 
should be quite acceptable because all iso-surfaces are only a few integral scales in 
streamwise extent and smaller in the transverse direction. We should point out, 
however, that  if one uses fewer longer chunks of the signal for the calculations (the 
total length remaining the same), the straight-line regions become more and more 
ambiguous, until they disappear altogether for signal lengths beyond, say, 500 
integral scales long (figure 14). The distribution then takes the shape characteristic 
of a random process (figure 15). What this implies is that  the iso-surfaces are 
fractal-like when viewed on timescales of the order of 50 integral timescales, but 
behave more akin to random processes when viewed on timescales an order of 
magnitude larger. 

An operationally helpful comment on the long-time randomization of the self- 
similar behaviour observed over short times is the following. If two separate segments 
of data show fractal characteristics but with slightly different fractal dimensions, it 
is easy to see that the sum of the two segments of data will in general not show the 
fractal behaviour. (The sum of two processes, each of which is hyperbolically 
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distributed, will also be hyperbolically distributed only if the scaling exponent is the 
same for both.) The observed randomization is a rough consequence of the central- 
limit theorem for the collection of a large number of slightly different and nearly 
independent events. If we argue that fractals are intermediate between complete 
order and total chaos, we may interpret our findings as revealing short-time order 
(or order over small extent) and long-time disorder in turbulence - a concept that 
has support in a variety of circumstances in turbulent flows. 

4. Fractal dimensions of dissipative structures of turbulence 
Another aspect of turbulence that is a candidate for fractal description is its 

dissipative (or internal or small) structure. It is known (Batchelor & Townsend 1949) 
that the small structure of turbulence is intermittent, and that scale-similarity 
arguments (e.g. Gurvich & Yaglom 1967) are very helpful in describing it. The essence 
of scale-similarity arguments in this context is the following. Within a given field of 
(fully developed) turbulence, consider a cube with sides of length Lo, where Lo is an 
integral scale of turbulence. If we divide this cube into a number (n % 1 )  of smaller 
cubes of length L, = Lad, the density of dissipation rate in each of these smaller 
cubes is distributed according to a certain probability law. Further subdivision of 
these cubes into second-order cubes of length L, = L,n-i leaves the probability 
distribution unaltered. This similarity extends to all scales of motion until one reaches 
sizes directly affected by viscosity. The simplest distribution is the binary one 
according to which a given high-order box either contains dissipation or does not. 
It is this simple picture that we shall pursue. The goal in this section is to examine 
the appropriateness of fractal description for the dissipative structure of both 
turbulent energy and of a passive-scalar field. Except for the material in the following 
subsection, which is an update of some earlier work, the rest of the material in this 
section is new. 

4.1. An update of Mandelbrot’s work 
Let 9 be the fractal dimension of the dissipative field. (We shall avoid using the 
subscript 3 in this instance because there is no ambiguity.) When we have resolved 
the smallest scales 7, and determined the number N of boxes of size 7 required to 
cover the entire dissipation regions, 9 can be calculated according to its definition : 

Since each ,ube has a volume of the order (L, , /T)~, the total volume occupied by the 
cubes of active dissipation is (L,,/7)g-3. Since all dissipation is contained in these 
cubes, the level of dissipation in them is (L0/7)3-9 times the global average value. 
Assuming local isotropy, this means that (du/dx), in the dissipating cubes is 
( L , / T ) ~ - ~  times the global mean. Consequently, the kurtosis (or the flatness factor) 
of duldx. defined as 

will be given by (L0/7)2(3-9) times the volume occupied by the dissipating cubes. 
(Note that this assumes the identity of the set supporting dissipation and that 
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FIGURE 17. The kurtosis of the temperature derivative ( d T / d t ) .  0,  McConnell (1976), atmosphere; 
4, Antonia el aE. (1980), atmosphere; D, Antonia & Danh (1977), atmosphere; 0, Sreenivasan, 

Antonia & Danh (19771, boundary layer; A, Gibson et al. (1970), atmosphere; D, Park (1976), 
atmosphere; 0, McConnell(l976); jet; V, Antonia & Van Atta (1975); D ,  Antonia& Danh (1977), 
jet; V, Gibson & Masiello (1972), jet; v, Gibson et al. (19701, jet. 

supporting (du/dt)2. We are strictly calculating the fractal dimension of the latter.) 
From (2.4), we have 

where R, = u’h/u, h being the Taylor microscale and u’ the root-mean-square 
streamwise velocity. If we invoke Taylor’s frozen-field hypothesis, the flatness factor 
of (duldx) is the same as that of ( d u l d t ) ;  Antonia, Phan-Thien & Chambers (1980) 
have shown that this is true to within about 7 yo. A plot of log K ,  where now K is 
the kurtosis of (du ldt ) ,  us. log R, will yield the co-dimension ( 3 - 9 ) .  

Mandelbrot used this argument and, from an examination of the kurtosis data from 
Kuo & Corrsin (1971), estimated 9 to be 2.6. More data have become available since 

FIGURE 16. The variation of the kurtosis of (duldt) as a function of the microscale Reynolds number. 
With minor modifications, this diagram is the same as figure 2 of Van Atta & Antonia (1980). 0, 
Batchelor & Townsend (1947, 1949), grid turbulence; ., Friehe, Van Atta & Gibson (1971), circular 
cylinder; 0 ,  Gibson, Stegen & Williams (1970), atmosphere; 0, Wyngaard & Tennekes (1970), 
mixing layer and atmosphere; A, McConnell(1976), atmosphere; A, Park (1976), atmosphere; 0 ,  
Williams & Paulson (1977), atmosphere; V, Champagne (1978), atmosphere; 0, Kuo & Corrsin 
(1971), grid turbulence and circular jet; *, Pond & Stewart (1965), atmosphere. 
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FIGURE 18. The hyperflatness of (dT/dt). +, Yeh (1971); 0 ,  Sreenivasan, Antonia & Danh 
(unpublished), boundary layer; V, Antonia & Van A t t a  (1978), jet; A, Antonia & Van At t a  (1978), 
laboratory boundary layer; 0, Antonia & Van Atta (1978), atmospheric boundary layer over land; 
W ,  Park (1976), atmospheric boundary layer over water. 

then, and are plotted in figure 16. With small modifications and additions, this figure 
is essentially a reproduction from Van Atta & Antonia (1980) who first compiled 
them. Given the difficulties in obtaining the data, they may be considered to collapse 
on a line with a slope of 0.4, yielding a G8 of 2.73, a revision from Mandelbrot’s earlier 
estimate. This means that the fractional volume (L0/7)(g-3) occupied by the 
dissipation field is given by ( L , / V ) - O . ~ ~ .  For R, < 150, the slope in figure 16 is decidely 
smaller (z 0.15), which yields a G8 of 2.9. This indicates either that the dissipation 
regions a t  low Reynolds numbers are less spotty or that  local isotropy does not obtain. 
Both are likely. 

4.2. Fractal dimension of the temperature ‘dissipation’ jield 

Precisely the same arguments show that the kurtosis FoI for the temperature 
derivative (dT/dt) is related to the Reynolds number as 

where B* is the dimension of the temperature dissipat,ion field. From figure 17,  where 
all the available data have been collected, we conclude that B* = 2.6. (By drawing 
a line with a slope of 0.52 on figure 16, it  is easy to see that the difference between 
the scalar and momentum dissipation fields is indeed statistically significant.) The 
temperature dissipation field (and by inference, those of all passive scalars) is less 
space filling (CC (L,/7)-0.4), or is more intermittent. This result has been known to 
oceanographers for some time. 

Similar arguments suggest that  the so-called hyperflatness (i.e. the normalized 
sixth moment) of (dT/dt) must behave like Ri(3-9*). Figure 18 shows that this is quite 
consistent with the experimental data for R, > 100. 
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FIGURE 19. Log N ,  us. log E for the 'dissipation' field in grid turbulence by a line intercept using a 
threshold of 5 3 .  The inset shows the dependence of the resulting dimension on the threshold used 
to identify the iso-dissipation surface. 

4.3. Dimensions of iso-dissipation surfaces by the line-intersection method 
It is obvious that the volume occupied by the dissipative structures depends on the 
threshold employed to identify the dissipation regions. There is no explicit mention 
of any threshold in the above method, which is both its strength and n-eakness- 
weakness because one does not really understand the inherent experimental definition 
of dissipation regions: the probes and the differentiation operations somehon set a 
threshold of their own. To permit sharper questions about the dependence on the 
threshold or, equivalently, about the dimensions of iso-dissipation surfaces. it is 
useful to resort to the line-intersection method. The method here is in principle free 
of some of the ambiguities raised in earlier sections because of the expected statistical 
isotropy of the dissipation regions, even in inhomogeneous shear flows. The procedure 
is exactly the same as in 52.4, except that  we replace u by (duldf)'. Figure 19 gives 
a typical result in grid turbulence for the threshold setting equal to 5 times the global 
mean value of dissipation. The slopes in the appropriate regions of similar curves 
obtained for various thresholds are shown in the inset. The fairlv strong dependence 
of 9 on the threshold means that the dissipation regions identified by higher threshold 
settings are less space filling (obviously!), and the surfaces bounding them are less 
convoluted. (Similar data for clouds have now been obtained by Lorejoj- 8- Schertzer 
1986.) It must be mentioned that the range of scales over which self-similarity can 
be observed shrinks as we approach lower thresholds, thus making the dimension 
measurements more uncertain for iso-surfaces containing most of the dissipation (i.e. 
low threshold); this accounts for the larger scatter there. We observe hon ever that 
the mean trend is to intercept the 9-axis a t  a value of near 2.7.  which compares very 
well with the value obtained in 94.1. 

We saw earlier that  the volume occupied by the dissipation structures is small. 
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equal to (L,,/v)"-~. Fractal sets that  occupy a small fraction of the embedding volume 
are called thin fractals (to be contrasted with fat fractals in $5.5). Mathematically, 
thin fractals are defined as sets possessing zero volume; in practice, this volume 
is positive but small because of the finite inner cutoff scale. We are justified in thinking 
of the dissipative set as a thin fractal because its volume/area ratio is vanishingly 
small a t  sufficiently high Reynolds numbers. Needless to say, the turbulent/non- 
turbulent interface is a thin fractal also. 

5. Miscellaneous aspects 

usefully be associated with fractals. 
In  this section, we shall briefly discuss several aspects of turbulence that may 

5.1. Fractal dimension of interfaces in the developing region 

If we consider as an example the flow past a circular cylinder, the interface between 
the vortical and non-vortical regions in the immediate vicinity of the cylinder is 
expected to be a classical surface (because of the more or less regular vortex shedding), 
and the dimension will then be 2. This expectation will hold even a t  high Reynolds 
numbers except that  i t  will be confined more and more near the 'origin' of the flow. 
Far downstream, we have shown the dimension of the interface to be about 2.4, which 
means that in the developing regions the dimension goes up from 2 to about 2.4. We 
have not made extensive measurements in this region, but scattered measurements 
(by imaging methods in jets and line cuts in wakes) confirm this suggestion. 
Naturally, the range of scale similarity is shorter. 

5.2. Evolution of material lines in grid turbulence 
To motivate the discussion here, i t  is convenient to  refer to a 'classical ' fractal, like 
a Koch curve (Mandelbrot 1982, p. 42). Iterations of the type shown in figure 20 on 
the sides of an initially equilateral triangle will produce smaller and smaller scales; 
the results of three iterations are shown. The fractal dimension of the boundary of 
the asymptotic object - the so-called Koch curve - can easily be deduced from its 
definition to be log4/log3. The relevant point here is that  the length of this Koch 
curve increases exponentially with the number of iterations. 

Suppose now that we place a patch of ink in a field of turbulence. The effect of 
turbulence dynamics, which is to distort the ink patch in a manner visualized 
schematically by Corrsin (1959), can be thought of as being equivalent to a 
repetitively occurring iteration scheme (according to some complex algorithm), pro- 
ducing smaller and smaller scales a t  each iteration. If this is so, the perimeter of the 
ink blob should increase exponentially. Mundane experimental difficulties have so far 
prevented us from demonstrating this expectation. However, we have examined a 
somewhat similar question of the growth of material lines in a turbulence field behind 
a grid. We generated lines of fine hydrogen bubbles in the developed region behind 
a grid placed in a water channel, and measured their length as they propagate 
downstream. Their true lengths have been measured by obtaining two orthogonal 
projections simultaneously (placing a mirror a t  45') ; the procedure is explained in 
the Appendix. Corrsin & Karweit (1969) had earlier measured the increase in length 
of hydrogen-bubble lines, but their method was indirect and used an equation 
(Corrsin & Phillips 1961) relating the length to the number of cuts experienced by 
sampling planes making all angles with the axis of a statistically axisymmetric line 
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FIGURE 20. The iteration scheme for a triadic Koch island (Mandelbrot 1982) to be performed on 
an equilateral triangle (the so-called initiator) ; in each iteration the sides of the triangle are 
restructured according to the scheme shown on the upper right. The objects resulting from the first 
three iterations are shown. 

element. It is gratifying to  note that the two estimates agree where they overlap 
(figure 21). Clearly, except initially and in the last stages, the growth is indeed 
exponential. The initial behaviour is not expected to  be exponential (Batchelor 
1959), and the final levelling off is most likely due to the inadequate resolution of 
length measurement. 

5.3.  Velocity signals 
Figure 22 shows the temperature signal taken on the centreline of a slightly heated 
axisymmetric jet (Sreenivasan et al. 1979). The most striking feature of this signal 
is the sharp ramp-like structures upon which the small structure is superimposed. 
Admittedly, this signal is carefully chosen to emphasize the point, but i t  is not 
statistically untypical. The temperature and velocity (especially normal component) 
signals in the boundary layer (even in the non-intermittent parts, see figure 11) show 
similar behaviour, although not as dramatic. The conclusion is that the fluctuations 
do not randomly jump about from one level to another, but gradually build up to 
a level from which they suddenly depart rather sharply. This behaviour is consistent 
with a power-law behaviour, which is symptomatic of self-similarity (and thus 
fractals). Following Lovejoy & Mandelbrot (1985), if we artificially construct a sum 
of randomly placed rectangular pulses whose width w obeys an inverse cumulative 
distribution Pr(w > W )  cc W-l, and their height is _+ w1Ia, the sign being randomly 
chosen, we can construct signals that  show qualitative semblance to those shown in 
figure 22; here a is a characteristic exponent. 

One useful comment relates to the expectation (Carter et al. 1986) that the 
turbulent signals themselves are fractals. This is obviously not a simple concept 
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FIGURE 21. The average material line length as a function of the downstream distance from the 
grid. The circles are the data  of Corrsin & Karweit (1969), the  triangles the present. For both 
experiments, the hydrogen bubble lines were generated approximately 18 mesh sizes downstream 
of the grid. 
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FIGERE 22. A temperature oscillogram in an axisymrnetric heated jet, obtained in the region of 
maximum production of turbulent energy. Intermittency factor = 0.93. The sharp jumps associated 
with AB (for instance) have been a subject of much study. 

because any dimension calculations depend strongly on the scales chosen for plotting 
the velocity signal. For example, if the signal is expanded to scales comparable with 
Kolmogorov scales, the signal looks very smooth leading to a dimension close to 
unity. The expectation is that  the signals are self-affine fractals, by which we mean 
that there are more complex scaling behaviours (invariance under transformations 
of the type S(x,, x2,. . . , xi)+S(rIxl ,  r 2 x 2 , .  . . , r ix i ) ,  where all the r are different), and 
our work in this direction is continuing. 

5.4. Higher-order dimensions 

For tJhe fractal description to be complete, one should be able a t  least to distinguish 
between two different fractals which may have the same dimension. Higher-order 
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dimensions are defined for this purpose (Hentschel & Procaccia 1983 ; Mandelbrot 
1986), and are given by 1 l0gZpQ 

D, = lim (-A), (5.1) 
c+o 9- 1 1% 

where p ,  is the probability of finding points of the set in the ith box of length E .  For 
high values of q, D, indicates the scaling behaviour of the more ‘concentrated’ 
regions; for low q, the character of the more ‘sparse’ regions is quantified. We have 
calculated these dimensions for several values of q, and these do display (as will be 
reported elsewhere) global characteristics similar to many strange sets discussed, for 
example, by Halsey et al. (1986). 

5.5. Fat fractals and turbulence 
At this stage, it  is interesting to make some tentative connections between turbulence 
and what have been called fat fractals. In the literature, there is no apparent 
agreement on the precise meaning of fat fractals (contrast Umberger & Farmer 1985 
with Grebogi et al. 1985), and this has to some extent dampened our own pursuit in 
this direction. A t  a basic level, however, the meaning of a fat-fractal set is that it 
occupies a finite volume (the box-counting algorithm applied to this set yields the 
dimension of the embedding space), but its boundary is a thin fractal. A possible 
example of a fat fractal is the set of all points in figure 3 where the smoke 
concentration is above a prescribed threshold; if the threshold properly sets apart 
the turbulent and non-turbulent regions, the ‘skin’ of the set is the interface whose 
dimension we have already measured in $2. Using a suitable integral of the measured 
intermittency factors in several standard turbulent flows, we have obtained rough 
estimates for the volume (say, within the region U < 0.99 U,) occupied by the 
turbulent zone. The fraction of volume is about 0.5 for circular jets (with or without 
coflow), about 0.6 for plane wakes behind circular cylinders, and about 0.75 for the 
two-dimensional boundary layers in constant pressure. The somewhat larger value 
in the last case is consistent with the decreased intermittency near the wall. 

The same argument can be extended to the set of points in space where a velocity 
component (see $3) is greater than a prescribed threshold ul. The ‘skin’ of such a 
fat fractal is the u1 iso-velocity surface. 

6. Concluding remarks 
We have shown that there are several facets of turbulent flows possessing fractal- 

like behaviour. We have measured fractal dimensions for some of them. The fractal 
dimension is only one measure of the properties of a fractal set, albeit the most 
important one, and higher-order dimensions (mentioned in $5.4) will help in 
specifying the fractal more completely. 

It is necessary to remark that the present work falls far short of proving that 
‘turbulence is fractal ’ without need for qualifications and reservations. As discussed 
in various sections, the qualifications arise partly because of the limitations of the 
techniques employed; these can (and should) undoubtedly be bettered in the next 
generation of experiments. But it seems to us on the basis of the present measurements 
that turbulence (except perhaps for the dissipation field) genuinely loses its fractal- 
like behaviour when viewed on very long timescales. Thus, turbulence is perhaps 
a collection of a number of fractals each of which is slightly different. We think that 
this view can be reconciled roughly with the view of turbulence now in vogue as an 
ensemble of semi-organized motions. 
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While there is not much question that this work is interesting, its usefulness in 
better coming to grips with the hard issues of the 'turbulence problem ' is less certain. 
In this context, we might interpret the 'turbulence problem ' to  mean the following : 
given the various fractal dimensions of several of its facets, how may one reconstruct 
the turbulent flow that generated them 1 We know of no serious enquiry of this sort 
being done in the context of turbulence, although some beginnings seem to have been 
made in a broader setting (Barnsley et at. 1986). Unless this issue is addressed, i t  
is not clear how fractals will advance our understanding of turbulence dynamics. I n  
fact, contrary arguments have often been advanced. A case in point is the description 
of the dissipation field. I ts  traditional description via either vortex lines, tubes or 
blobs, i t  is said, is physically more appealing than its new description as a thin fractal 
of dimension 2.7. Actually, this point of view is not quite correct because a satisfac- 
tory description via vortex elements that  is in complete consonance with measure- 
ments has never been attained (Kuo & Corrsin 1972). At any rate, fractals may 
describe the geometry of turbulence (keep in mind all our disclaimers a t  different 
places!), but geometry and dynamics do not have a one-to-one correspondence. 

It is appropriate to contrast the measurement difficulties in obtaining fractal 
dimensions in physical space with those in phase space. Even engineering flows (at  
low Reynolds numbers) possess attractors with fractal dimensions (Sreenivasan 
1986), but their determination becomes extremely difficult and uncertain as the 
Reynolds number increases. In  contrast, the determination of fractal dimensions in 
physical space becomes more definitive a t  higher Reynolds numbers. 

As a final remark, we note that numerical work of the sort initiatcd by Chorin 
(1982), dedicated to questions on the dynamic evolution of vortex elements, will go 
some way in establishing possiblc connections between fractals and turbulence. 

Our thanks must extend to  David Aronstein who, as a summer student, laid the 
groundwork for part of the work reported in 52.1 ; to  William van Altena for allowing 
us the use of his digitizer; to Paul Dimotakis for his permission to reproduce figure 
4 and for his penetrating comments on an earlier draft; to Senoit Mandelbrot for 
commenting on the manuscript, and for providing the necessary impetus in the early 
stages of this work morc than three ycars ago by refusing to  bclicve KKS's ncgativc 
conclusions of that  time; to a numhcr of colleagucs (especially W. Van dcr Water, 
Celso Grebogi, Rick Jensen, and B.-T. Chu) whose cnoouragcmcnt wc: rc:c:civcd a t  
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ruptions to his own boundary layer work; to Jim MoMiohacl who cncouragcd its 
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Appendix: Growth of material lines in grid turbulence 
A small watcr channel was usocl and linas of hytlrogon hubblcs worc produc:c:d st) 

x / M  = 18 behind a turhulence-gcneratina grid (solidity = 0.42, mcsh sizc: 3 rnrn). 
Downstream, a mirror was p1ac:cd a t  an angle of 45" with thc horizont)al dii~cc:tioii, 
SO that a camera placed dirwtly over thc flow c:ould simult~itnoously tiLk(: pic*tfuivs of 
two (pcrpcndic:ular) pro.i(:ctions of thc saint: hycir.ogon-hubbl(: l i n c : .  I2.y cliscwtiziiig 
both lines and some simple trigonomctric: rolations, it is thon oasy to d(:t,(:rrnitic t h c  
rcal length of the linc in thrcx dirncnsions. 

S U ~ ~ O S C  wc have: two projwtions PI and 92 (SO(: f i g u ~ :  23) of iL  liiw in sl)iL('(', i L t I ( 1  
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ABCD = slice of I, 

I ,  = AC, 
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p =  Q C A G  

a2 = 3 BAF 

FIGURE 23. Orthogonal projections of a line segment and definition of angles and lines. 

discretize them in equally spaced columns of width dx. From figure 23, the following 
relations can be inferred : 

dx = I, cosal = I, cosa,, 

de cosp = l,, 

de sin /3 = 1, sin a,. 

Thus, 

Finally, by expressing de as a function of dx and both angles, we get 

tan /3 = 1 ,  sin a2/11. 

dx 
cos a1 eos (arctan ( c m  a,  sin a,/oos a2)) ' 

de = 

By measuring the angles a1 and a, in each column of the discretized projections, and 
adding all the computed de, we gct the real length (up to an accuracy of dx) of the 
line in three dimensions. 

This was repeated for lines a t  several distances from the grid ; resolution problems 
and fast diffusion of the hydrogen-bubble lines prcventcd us from analysing data a t  
large distances. 
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